23 research outputs found

    Hedgehog signaling is required for the differentiation of ES cells into neurectoderm

    Get PDF
    AbstractMouse embryonic stem cells can differentiate in vitro into cells of the nervous system, neurons and glia. This differentiation mimics stages observed in vivo, including the generation of primitive ectoderm and neurectoderm in embryoid body culture. We demonstrate here that embryonic stem cell lines mutant for components of the Hedgehog signaling cascade are deficient at generating neurectoderm-containing embryoid bodies. The embryoid bodies derived from mutant cells are also unable to respond to retinoic acid treatment by producing nestin-positive neural stem cells, a response observed in cultures of heterozygous cells, and contain cores apparently arrested at the primitive ectoderm stage. The mutant cultures are also deficient in their capacity to differentiate into mature neurons and glia. These data are consistent with a role for Hedgehog signaling in generating neurectoderm capable of producing the appropriate neuronal and glial progenitors in ES cell culture

    CXCL12-Mediated Guidance of Migrating Embryonic Stem Cell-Derived Neural Progenitors Transplanted into the Hippocampus

    Get PDF
    Stem cell therapies for neurodegenerative disorders require accurate delivery of the transplanted cells to the sites of damage. Numerous studies have established that fluid injections to the hippocampus can induce lesions in the dentate gyrus (DG) that lead to cell death within the upper blade. Using a mouse model of temporal lobe epilepsy, we previously observed that embryonic stem cell-derived neural progenitors (ESNPs) survive and differentiate within the granule cell layer after stereotaxic delivery to the DG, replacing the endogenous cells of the upper blade. To investigate the mechanisms for ESNP migration and repair in the DG, we examined the role of the chemokine CXCL12 in mice subjected to kainic acid-induced seizures. We now show that ESNPs transplanted into the DG show extensive migration through the upper blade, along the septotemporal axis of the hippocampus. Seizures upregulate CXCL12 and infusion of the CXCR4 antagonist AMD3100 by osmotic minipump attenuated ESNP migration. We also demonstrate that seizures promote the differentiation of transplanted ESNPs toward neuronal rather than astrocyte fates. These findings suggest that ESNPs transplanted into the adult rodent hippocampus migrate in response to cytokine-mediated signals

    The contribution of human/non-human animal chimeras to stem cell research

    No full text
    Chimeric animals are made up of cells from two separate zygotes. Human/non-human animal chimeras have been used for a number of research purposes, including human disease modeling. Pluripotent stem cell (PSC) research has relied upon the chimera approach to examine the developmental potential of stem cells, to determine the efficacy of cell replacement therapies, and to establish a means of producing human organs. Based on ethical issues, this work has faced pushback from various sources including funding agencies. We discuss here the essential role these studies have played, from gaining a better understanding of human biology to providing a stepping stone to human disease treatments. We also consider the major ethical issues, as well as the current status of support for this work in the United States

    Hedgehog Promotes Production of Inhibitory Interneurons in Vivo and in Vitro from Pluripotent Stem Cells

    No full text
    Loss or damage of cortical inhibitory interneurons characterizes a number of neurological disorders. There is therefore a great deal of interest in learning how to generate these neurons from a pluripotent stem cell source so they can be used for cell replacement therapies or for in vitro drug testing. To design a directed differentiation protocol, a number of groups have used the information gained in the last 15 years detailing the conditions that promote interneuron progenitor differentiation in the ventral telencephalon during embryogenesis. The use of Hedgehog peptides and agonists is featured prominently in these approaches. We review here the data documenting a role for Hedgehog in specifying interneurons in both the embryonic brain during development and in vitro during the directed differentiation of pluripotent stem cells

    Epidosembryos to the Rescue

    No full text
    corecore